Add like
Add dislike
Add to saved papers

Enhance Carrier Diffusion of Monolayer MoSe 2 by Interface Engineering.

Two-dimensional materials hold great potentials for beyond-CMOS (complementary metal-oxide-semiconductor) electronical and optoelectrical applications, and the development of field effect transistors (FET) with excellent performance using such materials is of particular interest. How to improve the performance of devices thus becomes an urgent issue. The performance of FETs depends greatly on the intrinsic electrical properties of the channel materials, meanwhile the device interface quality, such as extrinsic scattering of charged impurities, charge traps, and substrate surface roughness have a great influence on the performance. In this paper, the impact of the interface quality on the carrier diffusion behaviors of monolayer (ML) MoSe2 has been investigated by using an in situ ultrafast laser technique to avoid the surface contamination during device fabrication process. Two types of self-assembled monolayers (SAMs) are introduced to modify the gate dielectric surface through an interface engineering approach to obtain chemical-stable interfaces. The results showed that the transport properties of ML MoSe2 were enhanced after interface engineering, for example, the carrier mobility of ML MoSe2 was improved from ∼59.4 to ∼166.5 cm2 V-1 s-1 after the SAM modification. Meanwhile, the photocarrier dynamics of ML MoSe2 before and after interfacial engineering were also carefully studied. Our studies provide a feasible method for improving the carrier diffusion behaviors of such materials, and making them suited for application in future integrated circuit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app