Add like
Add dislike
Add to saved papers

Synergistic Coassembly of Folic Acid-Based Supramolecular Polymer with a Covalent Polymer Toward Fabricating Functional Antibacterial Biomaterials.

Supramolecular biomaterials can recapitulate the structural and functional facets of the native extracellular matrix and react to biochemical cues, leveraging the unique attributes of noncovalent interactions, including reversibility and tunability. However, the low mechanical properties of supramolecular biomaterials can restrict their utilization in specific applications. Combining the advantages of supramolecular polymers with covalent polymers can lead to the fabrication of tailor-made biomaterials with enhanced mechanical properties/degradability. Herein, we demonstrate a synergistic coassembled self-healing gel as a multifunctional supramolecular material. As the supramolecular polymer component, we chose folic acid (vitamin B9 ), an important biomolecule that forms a gel comprising one-dimensional (1D) supramolecular polymers. Integrating polyvinyl alcohol (PVA) into this supramolecular gel alters its ultrastructure and augments its mechanical properties. A drastic improvement of complex modulus (G*) (∼3674 times) was observed in the folic acid-PVA gel with 15% w / v PVA (33215 Pa) compared with the folic acid gel (9.04 Pa). The coassembled hydrogels possessed self-healing and injectable/thixotropic attributes and could be printed into specific three-dimensional (3D) shapes. Synergistically, the supramolecular polymers of folic acid also improve the toughness, durability, and ductility of the PVA films. A nanocomposite of the gels with silver nanoparticles exhibited excellent catalytic efficiency and antibacterial activity. The folic acid-PVA coassembled gels and films also possessed high cytocompatibility, substantiated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live-dead assays. Taken together, the antibacterial and cell-adhesive attributes suggest potential applications of these coassembled biomaterials for tissue engineering and wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app