We have located links that may give you full text access.
Simvastatin suppresses ethanol effects on the kidney of adolescent mice.
Folia Histochemica et Cytobiologica 2024 June 24
INTRODUCTION: Adolescents tend to experiment with ethanol which often results in heavy episodic drinking patterns leading to serious health concerns later in life. Chronic ethanol use damages renal tissue, promotes collagen deposition, and induces renal inflammation, thereby causing renal dysfunction. Therefore, an intervention such as simvastatin (a blood cholesterol-lowering drug) that could suppress the effects of ethanol on the kidney may be beneficial. This study explored the impact of simvastatin against the onset of renal morphological damage, fibrosis, and inflammation caused by ethanol exposure in mice.
MATERIALS AND METHODS: Ten four-week old C57BL/6J mice (F = 5; M = 5) were assigned to each experimental group: (I) NT; no administration of ethanol or simvastatin; (II) EtOH; 2.5 g/kg/day of 20% ethanol; intraperitoneal injection (i.p.) (III) SIM; 5 mg/kg/day of simvastatin; orally (iv) EtOH + SIM5; 5 mg/kg/day of simvastatin, orally, followed by 2.5 g/kg/day of 20% ethanol; i.p. and (v) EtOH + SIM15; 15 mg/kg/day simvastatin, orally, followed by 2.5 g/kg/day of 20% ethanol; i.p. After the 28-day treatment period, the right kidney was removed and processed for haematoxylin and eosin staining, Masson's trichrome staining, or Tumour necrosis factor-alpha (TNF-α) immunohistochemistry. The renal corpuscular area, glomerular area, and urinary space area were measured and the area of collagen or TNF-α expression was quantified using ImageJ software.
RESULTS: Ethanol administration significantly increased the renal corpuscular area, the glomerular area, the area of collagen, and the area of tissue with TNF-α immunoreactivity but decreased the area of urinary space. Simvastatin generally suppressed the ethanol effects in both sexes, although to varying degrees.
CONCLUSIONS: Simvastatin proved to suppress collagen deposition and the TNF-α production induced by ethanol in the kidney of mice thus indicating its effectiveness in the treatment of ethanol-related renal diseases.
MATERIALS AND METHODS: Ten four-week old C57BL/6J mice (F = 5; M = 5) were assigned to each experimental group: (I) NT; no administration of ethanol or simvastatin; (II) EtOH; 2.5 g/kg/day of 20% ethanol; intraperitoneal injection (i.p.) (III) SIM; 5 mg/kg/day of simvastatin; orally (iv) EtOH + SIM5; 5 mg/kg/day of simvastatin, orally, followed by 2.5 g/kg/day of 20% ethanol; i.p. and (v) EtOH + SIM15; 15 mg/kg/day simvastatin, orally, followed by 2.5 g/kg/day of 20% ethanol; i.p. After the 28-day treatment period, the right kidney was removed and processed for haematoxylin and eosin staining, Masson's trichrome staining, or Tumour necrosis factor-alpha (TNF-α) immunohistochemistry. The renal corpuscular area, glomerular area, and urinary space area were measured and the area of collagen or TNF-α expression was quantified using ImageJ software.
RESULTS: Ethanol administration significantly increased the renal corpuscular area, the glomerular area, the area of collagen, and the area of tissue with TNF-α immunoreactivity but decreased the area of urinary space. Simvastatin generally suppressed the ethanol effects in both sexes, although to varying degrees.
CONCLUSIONS: Simvastatin proved to suppress collagen deposition and the TNF-α production induced by ethanol in the kidney of mice thus indicating its effectiveness in the treatment of ethanol-related renal diseases.
Full text links
Related Resources
Trending Papers
Prevention and management of venous thrombosis in patients with cirrhosis.British Journal of Haematology 2024 August 26
Clinical Evaluation and Management of Thrombotic Microangiopathy.Arthritis & Rheumatology 2024 Februrary
Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management.American Journal of Hematology 2024 September 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app