Add like
Add dislike
Add to saved papers

Interlayer Electric Multipoles Induced by In-Plane Field from Quantum Geometric Origins.

Nano Letters 2024 June 21
We show that interlayer charge transfer in 2D materials can be driven by an in-plane electric field, giving rise to electrical multipole generation in linear and second order in-plane field. The linear and nonlinear effects have quantum geometric origins in the Berry curvature and quantum metric, respectively, defined in extended parameter spaces characteristic of layered materials. We elucidate their symmetry characters and demonstrate sizable dipole and quadrupole polarizations, respectively, in twisted bilayers and trilayers of transition metal dichalcogenides. Furthermore, we show that this effect is strongly enhanced during the topological phase transition tuned by interlayer translation. The effects point to a new electric control on the layer quantum degree of freedom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app