Add like
Add dislike
Add to saved papers

Hepatoprotective effects of zingerone on sodium arsenite-induced hepatotoxicity in rats: Modulating the levels of caspase-3/Bax/Bcl-2, NLRP3/NF-κB/TNF-α and ATF6/IRE1/PERK/GRP78 signaling pathways.

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes.

METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method.

RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress.

CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app