Add like
Add dislike
Add to saved papers

Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization.

PURPOSE: To evaluate the effect of deep learning reconstruction (DLR) on vascular depiction, tumor enhancement, and image quality of computed tomography hepatic arteriography (CTHA) images acquired during transcatheter arterial chemoembolization (TACE).

METHODS: Institutional review board approval was obtained. Twenty-seven patients (18 men and 9 women, mean age, 75.7 years) who underwent CTHA immediately before TACE were enrolled. All images were reconstructed using three reconstruction algorithms: hybrid-iterative reconstruction (hybrid-IR), DLR with mild strength (DLR-M), and DLR with strong strength (DLR-S). Vascular depiction, tumor enhancement, feeder visualization, and image quality of CTHA were quantitatively and qualitatively assessed by two radiologists and compared between the three reconstruction algorithms.

RESULTS: The mean signal-to-noise ratios (SNR) of sub-segmental arteries and sub-sub-segmental arteries, and the contrast-to-noise ratio (CNR) of tumors, were significantly higher on DLR-S than on DLR-M and hybrid-IR (P < 0.001). The mean qualitative score for sharpness of sub-segmental and sub-sub-segmental arteries was significantly better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). There was no significant difference in the feeder artery detection rate of automated feeder artery detection software among three reconstruction algorithms (P = 0.102). The contrast, continuity, and confidence level of feeder artery detection was significantly better on DLR-S than on DLR-M (P = 0.013, 0.005, and 0.001) and hybrid-IR (P < 0.001, P = 0.002, and P < 0.001). The weighted kappa values between two readers for qualitative scores of feeder artery visualization were 0.807-0.874. The mean qualitative scores for sharpness, granulation, and diagnostic acceptability of CTHA were better on DLR-S than on DLR-M and hybrid-IR (P < 0.001).

CONCLUSIONS: DLR significantly improved the SNR of small hepatic arteries, the CNR of tumor, and feeder artery visualization on CTHA images. DLR-S seems to be better suited to routine CTHA in TACE than does hybrid-IR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app