Add like
Add dislike
Add to saved papers

Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS.

Nano Letters 2024 June 19
Optically bright emitters in hexagonal boron nitride (hBN) often acting as a source of a single-photon are mostly attributed to point-defect centers, featuring localized intra-bandgap electronic states. Although vacancies, anti-sites, and impurities have been proposed as candidates, the exact physical and chemical nature of most hBN single-photon emitters (SPEs) within the visible region are still up for debate. Combining site-specific high-angle annular dark-field imaging (HAADF) with electron energy loss spectroscopy (EELS), we resolve and identify a few carbon substitutions among neighboring hBN hexagons, all within the same sample region, from which typical defect emission is observed. Our experimental results are further supported by first-principles calculations, through which the stability and possible optical transitions of the proposed carbon-defect complex are assessed. The presented correlation between optical emission and defects provides valuable information toward the controlled creation of emitters in hBN, highlighting carbon complexes as another probable cause of its visible SPEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app