Add like
Add dislike
Add to saved papers

Design, Synthesis, and Bioactivity Evaluation of a TF-Based Cancer Vaccine Candidate Using Lipid A Mimetics As a Built-In Adjuvant.

This study describes the design and synthesis of five TF-based cancer vaccine candidates using a lipid A mimetic as the carrier and a built-in adjuvant. All synthesized conjugates elicited robust and consistent TF-specific immune responses in mice without external adjuvants. Immunological studies subsequently conducted in wild-type and TLR4 knockout C57BL/6 mice demonstrated that the activation of TLR4 was the main reason that the synthesized lipid A mimetics increased the TF-specific immune responses. All antisera induced by these conjugates can specifically recognize, bind to, and induce the lysis of TF-positive cancer cells. Moreover, representative conjugates 2 and 3 could effectively reduce the growth of tumors and prolong the survival time of mice in vivo , and the efficacies were better than glycoprotein TF-CRM197 with alum adjuvant. Lipid A mimetics could therefore be a promising platform for the development of new carbohydrate-based vaccine carriers with self-adjuvanting properties for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app