Add like
Add dislike
Add to saved papers

From slenderness to robustness: Understanding long bone shape in sigmodontine rodents.

The morphological evolution of the appendicular skeleton may reflect the selective pressures specific to different environments, phylogenetic inheritance, or allometry. Covariation in bone shapes enhances morphological integration in response to ecological specializations. In contrast to previous multivariate studies using classical linear morphometry, we use a geometric morphometric approach to explore the morphological diversity of long bones and examine relationships between ecological categories and morphological characters in a species-rich and ecomorphologically diverse group of rodents. We examined the humerus, ulna, femur, and tibiofibula of 19 sigmodontine species with different locomotor types (ambulatory, quadrupedal-saltatorial, natatorial, semifossorial and scansorial) to investigate the influence of locomotor type and phylogeny on limb bone shape and morphological integration of the appendicular skeleton. This study represents the most detailed examination of the morphological diversity of long bones in sigmodontines, employing geometric morphometrics within an ecomorphological framework. Our results indicate that functional demands and evolutionary history jointly influence the shape of forelimb and hindlimb bones. The main variation in bone shape is associated with a slenderness-robustness gradient observed across all ecological categories. Quadrupedal-saltatorial species, with their need for agility, possess slender and elongated limbs, while natatorial and semifossorial species exhibit shorter and more robust bone shapes, suited for their respective environments. This gradient also influences bone covariation within limbs, demonstrating interconnectedness between elements. We found functional covariation between the ulna-tibiofibula and humerus-tibiofibula, likely important for propulsion, and anatomical covariation between the humerus-ulna and femur-tibiofibula, potentially reflecting overall limb structure. This study demonstrates that the versatile morphology of long bones in sigmodontines plays a critical role in their remarkable ecological and phylogenetic diversification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app