Add like
Add dislike
Add to saved papers

Inhibition of CIRBP represses the proliferation and migration of vascular smooth muscle cells via inhibiting Rheb/mTORC1 axis.

The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app