Add like
Add dislike
Add to saved papers

Dissecting the roles of dynamin and clathrin in platelet pinocytosis.

Platelets endocytose many molecules from their environment. However, this process of pinocytosis in platelets is poorly understood. Key endocytic regulators such as dynamin, clathrin, CDC42 and Arf6 are expressed in platelets but their roles in pinocytosis is not known. Stimulated platelets form two subpopulations of pro-aggregatory and procoagulant platelets. The effect of stimulation on pinocytosis is also poorly understood. In this study, washed human platelets were treated with a range of endocytosis inhibitors and stimulated using different activators. The rate of pinocytosis was assessed using pHrodo green, a pH-sensitive 10 kDa dextran. In unstimulated platelets, pHrodo fluorescence increased over time and accumulated as intracellular puncta indicating constituently active pinocytosis. Stimulated platelets (both pro-aggregatory and procoagulant) had an elevated pinocytosis rate compared to unstimulated platelets. Dynamin inhibition blocked pinocytosis in unstimulated, pro-aggregatory and procoagulant platelets indicating that most platelet pinocytosis is dynamin dependent. Although pinocytosis was clathrin-independent in unstimulated and procoagulant populations, clathrin partially contributed to pinocytosis in pro-aggregatory platelets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app