Add like
Add dislike
Add to saved papers

Integration of Clinical Trial Spatial Multi-omics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery.

Cancer Research 2024 June 12
Computational methods that simulate tumors mathematically to describe cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico, potentially greatly accelerating the delivery of new therapeutics to patients. To facilitate the design of dosing regimens and identification of potential biomarkers for immunotherapy, we developed a new computational model to track tumor progression at the organ scale while capturing the spatial heterogeneity of the tumor in HCC. This computational model of spatial quantitative systems pharmacology (spQSP) was designed to simulate the effects of combination immunotherapy. The model was initiated using literature-derived parameter values and fitted to the specifics of HCC. Model validation was done through comparison to spatial multi-omics data from a neoadjuvant HCC clinical trial combining anti-PD-1 immunotherapy and a multitargeted tyrosine kinase inhibitor (TKI) cabozantinib. Validation using spatial proteomics data from Imaging Mass Cytometry (IMC) demonstrated that closer proximity between CD8 T cells and macrophages correlated with non-response. We also compared the model output with Visium spatial transcriptomics (ST) profiling of samples from post-treatment tumor resections in the clinical trial and from another independent study of anti-PD1 monotherapy. ST data confirmed simulation results, suggesting the importance of spatial patterns of tumor vasculature and TGFβ in tumor and immune cell interactions. Our findings demonstrate that incorporating mathematical modeling and computer simulations with high-throughput spatial multi-omics data provides a novel approach for patient outcome prediction and biomarker discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app