Add like
Add dislike
Add to saved papers

Alternative proton exchange membrane based on a bicomponent anionic nanocellulose system.

Carbohydrate Polymers 2024 September 16
As integral parts of fuel cells, polymer electrolyte membranes (PEM) facilitate the conversion of hydrogen's chemical energy into electricity and water. Unfortunately, commercial PEMs are associated with high costs, limited durability, variable electrochemical performance and are based on perfluorinated polymers that persist in the environment. Nanocellulose-based PEMs have emerged as alternative options given their renewability, thermal and mechanical stability, low-cost, and hydrophilicity. These PEMs take advantage of the anionic nature of most nanocelluloses, as well as their facile modification with conductive functional groups, for instance, to endow ionic and electron conductivity. Herein, we incorporated for the first time two nanocellulose types, TEMPO-oxidized and sulfonated, to produce a fully bio-based PEM and studied their contribution separately and when mixed in a PEM matrix. Sulfonated nanocellulose-based PEMs are shown to perform similarly to commercial and bio-based membranes, demonstrating good thermal-oxidative stability (up to 190 °C), mechanical robustness (Young's modulus as high as 1.15 GPa and storage moduli >13 GPa), and high moisture-uptake capacity (ca. 6330 % after 48 h). The introduced nanocellulose membranes are shown as promising materials for proton-exchange material applications, as required in fuel cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app