Add like
Add dislike
Add to saved papers

Low density methacrylated pea, corn, and tapioca starch covalent cryogels with excellent elasticity and water/oil absorption capacity.

Carbohydrate Polymers 2024 September 16
Porous starch materials are promising in several applications as renewable natural biomaterials. This study reports an approach combining methacrylation of starch and chemical crosslinked cryogelation to fabricate highly elastic macroporous starch (ST-MA) cryogels with impressed water/oil absorption capacity and wet thermal stability among starch based porous materials. Five different types of starch, including pea, normal corn, high amylose corn, tapioca, and waxy maize starch with different amylose content, have been studied. The methacrylation degree is not related with amylose content. All cryogels exhibited excellent compressive elasticity enduring 90 % deformation without failure and good robustness in cyclic tests. The ST-MA cryogels from pea starch exhibited the highest Young's modulus and compressive strength among five types of starch. These covalent cryogels exhibit high wet-thermal stability and enzymatic hydrolysis stability, while still are biodegradable. The dry ST-MA sponges (2 wt%) showed outstanding liquid absorption capacity, absorbing ~40 folds (g/g) of water or ~ 36 folds (g/g) of oil respectively. All types of starch have similar liquid absorption performance. This study provides a universal approach to fabricate highly elastic covalent starch macroporous materials with impressed liquid absorption capacity and outstanding stability, especially wet-thermal stability, and may expand their applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app