Add like
Add dislike
Add to saved papers

Neurotropic murine coronavirus mediated demyelination: Factors dampening pathogenesis.

Virus infections and autoimmune responses are implicated as primary triggers of demyelinating diseases. Specifically, the association of Epstein-Barr virus (EBV) infection with development of multiple sclerosis (MS) has re-ignited an interest in virus induced autoimmune responses to CNS antigens. Nevertheless, demyelination may also be caused by immune mediated bystander pathology in an attempt to control direct infection in the CNS. Tissue damage as a result of anti-viral responses or low level viral persistence may lead to immune activation manifesting in demyelinating lesions, axonal damage and clinical symptoms. This review focuses on the neurotropic mouse coronavirus induced demyelination model to highlight how immune responses activated during the acute phase pave the way to dampen pathology and promote repair. We specifically discuss the role of immune dampening factors programmed cell death ligand 1 (PD-L1) and interleukin (IL)-10, as well as microglia and triggering receptor expressed on myeloid cells 2 (Trem2), in limiting demyelination independent of viral persistence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app