Add like
Add dislike
Add to saved papers

FOXP3 gene polymorphisms increase the risk of systemic lupus erythematosus in a Han Chinese population.

Annals of Medicine 2024 December
BACKGROUND: FOXP3 is a transcription factor that regulates the development and function of Treg, playing an essential role in preventing autoimmune diseases. Variation in FOXP3 can impair the function of Treg cells, thus destroying their inhibitory capacity and leading to autoimmune diseases. This paper investigated whether the three SNPs in the FOXP3 gene (-3279 C/A, -924 A/G and -6054 del/ATT) are associated with systemic lupus erythematosus (SLE) susceptibility in the Han Chinese population.

MATERIALS AND METHODS: The study cohort comprised 122 SLE patients and 268 healthy controls. Genotyping was performed by polymerase chain reaction sequence-specific primer (PCR-SSP). Furthermore, we examined the potential clinical manifestations associated with FOXP3 polymorphisms in SLE patients.

RESULTS: The results showed that the -3279 (C > A) was significantly associated with the SLE risk in a homozygote (OR = 3.24, 95% CI = 1.23-8.52, p  = .013, AA vs. CC), dominant (OR = 1.68, 95% CI = 1.07-2.65, p  = .025, AC + AA vs. CC), recessive (OR = 2.90, 95% CI = 1.12-7.55, p  = .023, AA vs. AC + CC) and allelic (OR = 1.72, 95% CI = 1.18-2.53, p  = .005, A vs. C) models. In addition, -924 (A > G) was positively associated with SLE risk in the heterozygote (OR = 1.66, 95% CI = 1.04-2.66, p  = .033, AG vs. AA) and dominant (OR = 1.59, 95% CI = 1.01-2.49, p  = .042, AG + GG vs. AA) models, whereas -6054 (del > ATT) was not associated with SLE. Moreover, the immunological index analysis suggested that decreased complement C4 occurred more frequently in SLE patients carrying the minor allele (A) -3279 (C > A) than those not ( p  = .005).

CONCLUSIONS: We demonstrated that -3279 (C > A) and -924 (A > G) were associated with an increased risk of SLE and the immunological index, indicating that the FOXP3 variation is potentially related to the occurrence and development of SLE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app