Add like
Add dislike
Add to saved papers

Brain lesion microstructure in neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein disease.

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) diagnosis are based on the presence of serological and magnetic resonance imaging (MRI) biomarkers. Diffusion tensor imaging (DTI), neurites orientation dispersion and density imaging (NODDI), and the Spherical Mean Technique (SMT) may be helpful to provide a microstructural characterization of the different types of white matter lesions and give an insight about their different pathological mechanisms. The aim of the study was to characterize microstructural differences between brain typical lesions (TLs) and nontypical lesions (nTLs).

METHODS: A total of 17 NMOSD and MOGAD patients [9 Aquaporin4 (AQP4) + NMO, 2 seronegative-NMO, 6 MOGAD] underwent MRI scans on a 3 Tesla MAGNETON PRISMA. Diffusion parameters (fractional anisotropy; mean diffusivity [MD]; intracellular volume fraction [ICVF]; extra-neurite transverse diffusivity; and extra-neurite MD; neurite signal fraction) were obtained using DTI, NODDI, and SMT. Microstructural parameters within lesions were compared through a generalized linear model using age, sex, and total lesion volume as covariates.

RESULTS: In NMOSD/MOGAD whole cohort (total lesions = 477), TLs showed increased MD and decreased ICVF compared to nTLs (p < .05), indicating higher inflammation and axonal loss. Similar results were found also in the AQP4 + NMO subgroup (decreased ICVF, p < .05). Furthermore, in NMOSD/MOGAD whole cohort and in AQP4 + NMO subgroup, TLs showed a trend toward higher EXRATRANS than nTLs, suggesting a more severe degree of demyelination within TLs.

CONCLUSIONS: TLs and nTLs in NMOSD/MOGAD showed different diffusion MRI-derived microstructural features, with TLs showing a more severe degree of inflammation and fiber disruption with respect to nTLs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app