We have located links that may give you full text access.
Prediction of lymph node metastasis in T1 colorectal cancer based on combination of body composition and vascular invasion.
International Journal of Colorectal Disease 2024 June 3
OBJECTIVES: Lymph node metastasis (LNM) in colorectal cancer (CRC) patients is not only associated with the tumor's local pathological characteristics but also with systemic factors. This study aims to assess the feasibility of using body composition and pathological features to predict LNM in early stage colorectal cancer (eCRC) patients.
METHODS: A total of 192 patients with T1 CRC who underwent CT scans and surgical resection were retrospectively included in the study. The cross-sectional areas of skeletal muscle, subcutaneous fat, and visceral fat at the L3 vertebral body level in CT scans were measured using Image J software. Logistic regression analysis were conducted to identify the risk factors for LNM. The predictive accuracy and discriminative ability of the indicators were evaluated using receiver operating characteristic (ROC) curves. Delong test was applied to compare area under different ROC curves.
RESULTS: LNM was observed in 32 out of 192 (16.7%) patients with eCRC. Multivariate analysis revealed that the ratio of skeletal muscle area to visceral fat area (SMA/VFA) (OR = 0.021, p = 0.007) and pathological indicators of vascular invasion (OR = 4.074, p = 0.020) were independent risk factors for LNM in eCRC patients. The AUROC for SMA/VFA was determined to be 0.740 (p < 0.001), while for vascular invasion, it was 0.641 (p = 0.012). Integrating both factors into a proposed predictive model resulted in an AUROC of 0.789 (p < 0.001), indicating a substantial improvement in predictive performance compared to relying on a single pathological indicator.
CONCLUSION: The combination of the SMA/VFA ratio and vascular invasion provides better prediction of LNM in eCRC.
METHODS: A total of 192 patients with T1 CRC who underwent CT scans and surgical resection were retrospectively included in the study. The cross-sectional areas of skeletal muscle, subcutaneous fat, and visceral fat at the L3 vertebral body level in CT scans were measured using Image J software. Logistic regression analysis were conducted to identify the risk factors for LNM. The predictive accuracy and discriminative ability of the indicators were evaluated using receiver operating characteristic (ROC) curves. Delong test was applied to compare area under different ROC curves.
RESULTS: LNM was observed in 32 out of 192 (16.7%) patients with eCRC. Multivariate analysis revealed that the ratio of skeletal muscle area to visceral fat area (SMA/VFA) (OR = 0.021, p = 0.007) and pathological indicators of vascular invasion (OR = 4.074, p = 0.020) were independent risk factors for LNM in eCRC patients. The AUROC for SMA/VFA was determined to be 0.740 (p < 0.001), while for vascular invasion, it was 0.641 (p = 0.012). Integrating both factors into a proposed predictive model resulted in an AUROC of 0.789 (p < 0.001), indicating a substantial improvement in predictive performance compared to relying on a single pathological indicator.
CONCLUSION: The combination of the SMA/VFA ratio and vascular invasion provides better prediction of LNM in eCRC.
Full text links
Related Resources
Trending Papers
Short Versus Long Antibiotic Duration in Streptococcus pneumoniae Bacteremia.Open Forum Infectious Diseases 2024 September
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app