Add like
Add dislike
Add to saved papers

Decreased histone expression in chronic rhinosinusitis with nasal polyps.

BACKGROUND: Histones have been associated with human diseases. However, the implication of extranuclear histone proteins and their potential mechanism in the pathophysiology of chronic rhinosinusitis (CRS) have not been thoroughly investigated. This study was designed to evaluate the role of histones in patients with CRS by comparing histone expression between patients and controls.

METHODS: Nasal polyp (NP) tissues were obtained, and their comprehensive gene expression profiles were investigated by microarray analysis. Differences in expression were verified by reverse transcriptase polymerase chain reaction and immunohistochemical staining. Cell culture and flow cytometry were used to evaluate the role of histones in the pathogenesis of polyps.

RESULTS: Significant differences in the microarray analysis were observed between the patient and control groups ( P < 0.01). It was found by flow cytometry that the histone (H2BK) can promote cell apoptosis in NPs.

CONCLUSION: Our results indicate that reduced expression of H2BK may contribute to the imbalance process of cell proliferation and apoptosis in CRS with NP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app