Add like
Add dislike
Add to saved papers

Development of a microcantilever-based biosensor for detecting Programmed Death Ligand 1.

The ongoing global concern of cancer worldwide necessitates the development of advanced diagnostic and therapeutic strategies. The majority of recent detection strategies involve the employment of biomarkers. A critical biomarker for cancer immunotherapy efficacy and patient prognosis is Programmed Death Ligand 1 (PD-L1), which is a key immune checkpoint protein. PD-L1 can be particularly linked to cancer progression and therapy response. Current detection methods, such as enzyme-linked immunosorbent assay (ELISA), face limitations like high cost, time consumption, and complexity. This study introduces a microcantilever-based biosensor designed for the detection of soluble PD-L1 (sPD-L1), which has a specific association with PD-L1. The biosensor utilizes anti-PD-L1 as the sensing layer, capitalizing on the specific binding affinity between anti-PD-L1 and sPD-L1. The presence of the sensing layer was confirmed through Atomic Force Microscopy (AFM) and contact angle measurements. Binding between sPD-L1 and anti-PD-L1 induces a shift in the microcantilever's resonance frequency, which is proportional to the PD-L1 concentration. Notably, the resonance frequency shift demonstrates a robust linear relationship with the increasing biomarker concentration, ranging from 0.05 ng/ml to 500 ng/ml. The detection limit of the biosensor was determined to be approximately 10 pg/ml. The biosensor demonstrates excellent performance in detecting PD-L1 with high specificity even in complex biological matrices. This innovative approach not only provides a promising tool for early cancer diagnosis but also holds potential for monitoring immunotherapy efficacy, paving the way for personalized and effective cancer treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app