Add like
Add dislike
Add to saved papers

Functional substrate analysis in patients with persistent atrial fibrillation.

OBJECTIVES: The aim of this study was to describe the correlation between atrial electrogram duration map (AEDUM), spatiotemporal electrogram dispersion (STED) and low voltage areas (LVA) in patients with persistent atrial fibrillation (PsAF).

BACKGROUND: The degree of left atrial (LA) tissue remodelling and augmented anisotropic conduction is one of the major issues related to PsAF ablation outcome.

METHODS: This study enrolled consecutive patients with PsAF undergoing pulmonary vein isolation. In all patients, voltage, AEDUM and STED maps were created, and the correlation was reported between these three mapping methods.

RESULTS: A total of 40 patients with PsAF were enrolled. The mean age was 62.2 ± 7.4 years, and males were 72.5% (n = 29). The overall bipolar voltage of the LA was 3.06 ± 1.87 mV. All patients had at least one AEDUM area (overall AEDUM area: 21.8 ± 8.2 cm2 ); the mean longest electrogram (EGMs) duration was 90 ± 19 ms. STED areas with < 120 ms was 46.3 ± 20.2 cm2 which covered 45 ± 22% of the LA surface. AEDUM and STED areas were most frequently reported on the roof, the anterior wall and the septum. The extension of the AEDUM areas was significantly smaller than STED areas with CL < 120 ms (21.8 ± 8.2 vs 46.3 ± 20.2; p-value < 0.0001). In 24 patients (60%), AEDUM areas was entirely included in the STED areas with CL < 120 ms. In the three (7.5%) patients with LVA, no correspondence with STED and AEDUM was noted.

CONCLUSION: AEDUM and STED maps allow to identify areas of conductive dysfunction as a possible atrial substrate even if a normal voltage is detected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app