We have located links that may give you full text access.
Single-cell transcriptome analysis reveals the regulatory functions of islet exocrine cells after short-time obesogenic diet.
Endocrine 2024 May 28
PURPOSE: This study aims to investigate the functions of exocrine islet cell subtypes in the early stage of obesity induced by high-fat diet (HFD), which is accompanied with deterioration of the systemic insulin response and islet subpopulation abnormalities.
METHODS: In this study, we analyzed published islet single-cell RNA sequencing (scRNA-seq) datasets from the early stage induced by HFD feeding. Bioinformatics tools such as findMarkers, Cellchat, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) terms were applied to identify the different functions of exocrine cell clusters.
RESULTS: A total of 26 cell clusters were obtained were identified from this dietary intervention model. Most proportions of cell subtypes were consistent between high-fat diet (HFD) and low-fat diet (LFD) groups, except for partial endocrine islet clusters and exocrine clusters. Most differentiated expression of genes in the HFD group was found in exocrine cluster. And we also found that the cell-cell interactions between ductal and endothelial cells were reduced in the HFD group, with the significant alteration in C17 (ductal) cluster. By further analyzing the co-expression regulatory network of transcription in the C17 cluster, we speculate that differentially expressed transcription factors affected the function of duct cells by affecting the expression of related genes in intercellular interaction networks, thereby promoting insulin resistance (IR) development.
CONCLUSION: Our results provide a reference for the function and regulatory mechanisms of exocrine cells in the obesity induced by HFD and probably influence the process of following insulin resistance.
METHODS: In this study, we analyzed published islet single-cell RNA sequencing (scRNA-seq) datasets from the early stage induced by HFD feeding. Bioinformatics tools such as findMarkers, Cellchat, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) terms were applied to identify the different functions of exocrine cell clusters.
RESULTS: A total of 26 cell clusters were obtained were identified from this dietary intervention model. Most proportions of cell subtypes were consistent between high-fat diet (HFD) and low-fat diet (LFD) groups, except for partial endocrine islet clusters and exocrine clusters. Most differentiated expression of genes in the HFD group was found in exocrine cluster. And we also found that the cell-cell interactions between ductal and endothelial cells were reduced in the HFD group, with the significant alteration in C17 (ductal) cluster. By further analyzing the co-expression regulatory network of transcription in the C17 cluster, we speculate that differentially expressed transcription factors affected the function of duct cells by affecting the expression of related genes in intercellular interaction networks, thereby promoting insulin resistance (IR) development.
CONCLUSION: Our results provide a reference for the function and regulatory mechanisms of exocrine cells in the obesity induced by HFD and probably influence the process of following insulin resistance.
Full text links
Related Resources
Trending Papers
Insomnia in older adults: A review of treatment options.Cleveland Clinic Journal of Medicine 2025 January 2
How We Treat ANCA-Associated Vasculitis: A Focus on the Maintenance Therapy.Journal of Clinical Medicine 2025 January 2
Allergic rhinitis.Allergy, Asthma, and Clinical Immunology 2024 December 27
Chronic Lymphocytic Leukemia: 2025 Update on the Epidemiology, Pathogenesis, Diagnosis, and Therapy.American Journal of Hematology 2025 January 28
Sepsis-induced cardiogenic shock: controversies and evidence gaps in diagnosis and management.Journal of Intensive Care 2025 January 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app