We have located links that may give you full text access.
Associations between regional adipose tissue distribution and skeletal muscle bioenergetics in older men and women.
Obesity 2024 June
OBJECTIVE: The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults.
METHODS: Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31 P-magnetic resonance spectroscopy; ATPmax ) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA.
RESULTS: Independent of BMI, total abdominal AT (standardized [Std.] β = -0.21; R2 = 0.09) and visceral AT (Std. β = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. β = -0.16; R2 = 0.25) and thigh MFI (Std. β = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. β = -0.19; R2 = 0.24) and visceral AT (Std. β = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447).
CONCLUSIONS: Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
METHODS: Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31 P-magnetic resonance spectroscopy; ATPmax ) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA.
RESULTS: Independent of BMI, total abdominal AT (standardized [Std.] β = -0.21; R2 = 0.09) and visceral AT (Std. β = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. β = -0.16; R2 = 0.25) and thigh MFI (Std. β = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. β = -0.19; R2 = 0.24) and visceral AT (Std. β = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447).
CONCLUSIONS: Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app