We have located links that may give you full text access.
The impact of altering the concentration of coffee constituents on their anticancer effect on oral squamous cell carcinoma cell line - in vitro study.
INTRODUCTION: Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck, which attracts much attention because of its increasing incidence and poor outcome. Coffee is one of the most popular beverages that are globally consumed. It consists of several phytochemical constituents, such as polyphenols, caffeine, and chlorogenic acid (CGA). Those constituents account for the potential effects on several diseases, including cancer. It has been reported that coffee exerts significant cytotoxicity against OSCC via inhibition of epidermal growth factor receptor tyrosine kinase (EGFR-TK) and up-regulation of apoptotic proteins, such as caspase-3 and caspase-9. The current study aims to measure the concentration of caffeine and CGA in 3 different types of coffee extracts, unroasted green coffee (GC), medium-roasted coffee (MRC), and decaffeinated coffee.
MATERIAL AND METHODS: The cytotoxic effect against OSCC-25 cell lines was evaluated and correlated with the concentration of constituents in each extract. The mechanisms of cytotoxicity were also studied by assessing the effect of each extract on caspase-3 and caspase-9 levels, in addition to the inhibitory effect on EGFR-TK.
RESULTS: It was found that the caffeine concentration was higher in MRC than in GC because of the roasting process. However, the concentration of caspase-3 and -9 and the inhibitory effect on EGFR-TK were much higher in GC than MRC-treated cells because of the higher concentration of CGA.
CONCLUSIONS: Decaffeinated coffee exerts lower cytotoxic effects because it was totally deprived of caffeine and CGA during the decaffeination process.
MATERIAL AND METHODS: The cytotoxic effect against OSCC-25 cell lines was evaluated and correlated with the concentration of constituents in each extract. The mechanisms of cytotoxicity were also studied by assessing the effect of each extract on caspase-3 and caspase-9 levels, in addition to the inhibitory effect on EGFR-TK.
RESULTS: It was found that the caffeine concentration was higher in MRC than in GC because of the roasting process. However, the concentration of caspase-3 and -9 and the inhibitory effect on EGFR-TK were much higher in GC than MRC-treated cells because of the higher concentration of CGA.
CONCLUSIONS: Decaffeinated coffee exerts lower cytotoxic effects because it was totally deprived of caffeine and CGA during the decaffeination process.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app