Journal Article
Review
Add like
Add dislike
Add to saved papers

Insights into the Impact of Physicochemical and Microbiological Parameters on the Safety Performance of Deep Geological Repositories.

Microorganisms 2024 May 20
Currently, the production of radioactive waste from nuclear industries is increasing, leading to the development of reliable containment strategies. The deep geological repository (DGR) concept has emerged as a suitable storage solution, involving the underground emplacement of nuclear waste within stable geological formations. Bentonite clay, known for its exceptional properties, serves as a critical artificial barrier in the DGR system. Recent studies have suggested the stability of bentonite within DGR relevant conditions, indicating its potential to enhance the long-term safety performance of the repository. On the other hand, due to its high resistance to corrosion, copper is one of the most studied reference materials for canisters. This review provides a comprehensive perspective on the influence of nuclear waste conditions on the characteristics and properties of DGR engineered barriers. This paper outlines how evolving physico-chemical parameters (e.g., temperature, radiation) in a nuclear repository may impact these barriers over the lifespan of a repository and emphasizes the significance of understanding the impact of microbial processes, especially in the event of radionuclide leakage (e.g., U, Se) or canister corrosion. Therefore, this review aims to address the long-term safety of future DGRs, which is critical given the complexity of such future systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app