Add like
Add dislike
Add to saved papers

Experimental and computational study on anti-gastric cancer activity and mechanism of evodiamine derivatives.

Introduction: Human topoisomerase 1 (TOP1) is an important target of various anticancer compounds. The design and discovery of inhibitors targeting TOP1 are of great significance for the development of anticancer drugs. Evodiamine and thieno [2,3-d] pyridine hybrids show potential antitumor activity. Herein, the anti-gastric cancer activities of these hybrids were investigated. Methods: The inhibitory effects of different concentrations of ten evodiamine derivatives on the gastric cancer cell line SGC-7901 were assessed using a methyl thiazolyl tetrazolium assay. Compounds EVO-1 and EVO-6 strongly inhibited gastric cancer cell proliferation, with inhibition rates of 81.17% ± 5.08% and 80.92% ± 2.75%, respectively. To discover the relationship between the structure and activity of these two derivatives, density functional theory was used to investigate their optimized geometries, natural population charges, frontier molecular orbitals, and molecular electrostatic potentials. To clarify their anti-gastric cancer mechanisms, molecular docking, molecular dynamics simulations, and binding free energy calculations were performed against TOP1. Results: The results demonstrated that these compounds could intercalate into the cleaved DNA-binding site to form a TOP1-DNA-ligand ternary complex, and the ligand remained secure at the cleaved DNA-binding site to form a stable ternary complex. As the binding free energy of compound EVO-1 with TOP1 (-38.33 kcal·mol-1 ) was lower than that of compound EVO-6 (-33.25 kcal·mol-1 ), compound EVO-1 could be a more potent anti-gastric cancer agent than compound EVO-6. Discussion: Thus, compound EVO-1 could be a promising anti-gastric cancer drug candidate. This study may facilitate the design and development of novel TOP1 inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app