Add like
Add dislike
Add to saved papers

Transparency, reproducibility, and replicability of pharmacoepidemiology studies in a distributed network environment.

PURPOSE: Our objective is to describe how the U.S. Food and Drug Administration (FDA)'s Sentinel System implements best practices to ensure trust in drug safety studies using real-world data from disparate sources.

METHODS: We present a stepwise schematic for Sentinel's data harmonization, data quality check, query design and implementation, and reporting practices, and describe approaches to enhancing the transparency, reproducibility, and replicability of studies at each step.

CONCLUSIONS: Each Sentinel data partner converts its source data into the Sentinel Common Data Model. The transformed data undergoes rigorous quality checks before it can be used for Sentinel queries. The Sentinel Common Data Model framework, data transformation codes for several data sources, and data quality assurance packages are publicly available. Designed to run against the Sentinel Common Data Model, Sentinel's querying system comprises a suite of pre-tested, parametrizable computer programs that allow users to perform sophisticated descriptive and inferential analysis without having to exchange individual-level data across sites. Detailed documentation of capabilities of the programs as well as the codes and information required to execute them are publicly available on the Sentinel website. Sentinel also provides public trainings and online resources to facilitate use of its data model and querying system. Its study specifications conform to established reporting frameworks aimed at facilitating reproducibility and replicability of real-world data studies. Reports from Sentinel queries and associated design and analytic specifications are available for download on the Sentinel website. Sentinel is an example of how real-world data can be used to generate regulatory-grade evidence at scale using a transparent, reproducible, and replicable process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app