We have located links that may give you full text access.
Predicting first time depression onset in pregnancy: applying machine learning methods to patient-reported data.
Archives of Women's Mental Health 2024 May 22
PURPOSE: To develop a machine learning algorithm, using patient-reported data from early pregnancy, to predict later onset of first time moderate-to-severe depression.
METHODS: A sample of 944 U.S. patient participants from a larger longitudinal observational cohortused a prenatal support mobile app from September 2019 to April 2022. Participants self-reported clinical and social risk factors during first trimester initiation of app use and completed voluntary depression screenings in each trimester. Several machine learning algorithms were applied to self-reported data, including a novel algorithm for causal discovery. Training and test datasets were built from a randomized 80/20 data split. Models were evaluated on their predictive accuracy and their simplicity (i.e., fewest variables required for prediction).
RESULTS: Among participants, 78% identified as white with an average age of 30 [IQR 26-34]; 61% had income ≥ $50,000; 70% had a college degree or higher; and 49% were nulliparous. All models accurately predicted first time moderate-severe depression using first trimester baseline data (AUC 0.74-0.89, sensitivity 0.35-0.81, specificity 0.78-0.95). Several predictors were common across models, including anxiety history, partnered status, psychosocial factors, and pregnancy-specific stressors. The optimal model used only 14 (26%) of the possible variables and had excellent accuracy (AUC = 0.89, sensitivity = 0.81, specificity = 0.83). When food insecurity reports were included among a subset of participants, demographics, including race and income, dropped out and the model became more accurate (AUC = 0.93) and simpler (9 variables).
CONCLUSION: A relatively small amount of self-report data produced a highly predictive model of first time depression among pregnant individuals.
METHODS: A sample of 944 U.S. patient participants from a larger longitudinal observational cohortused a prenatal support mobile app from September 2019 to April 2022. Participants self-reported clinical and social risk factors during first trimester initiation of app use and completed voluntary depression screenings in each trimester. Several machine learning algorithms were applied to self-reported data, including a novel algorithm for causal discovery. Training and test datasets were built from a randomized 80/20 data split. Models were evaluated on their predictive accuracy and their simplicity (i.e., fewest variables required for prediction).
RESULTS: Among participants, 78% identified as white with an average age of 30 [IQR 26-34]; 61% had income ≥ $50,000; 70% had a college degree or higher; and 49% were nulliparous. All models accurately predicted first time moderate-severe depression using first trimester baseline data (AUC 0.74-0.89, sensitivity 0.35-0.81, specificity 0.78-0.95). Several predictors were common across models, including anxiety history, partnered status, psychosocial factors, and pregnancy-specific stressors. The optimal model used only 14 (26%) of the possible variables and had excellent accuracy (AUC = 0.89, sensitivity = 0.81, specificity = 0.83). When food insecurity reports were included among a subset of participants, demographics, including race and income, dropped out and the model became more accurate (AUC = 0.93) and simpler (9 variables).
CONCLUSION: A relatively small amount of self-report data produced a highly predictive model of first time depression among pregnant individuals.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app