We have located links that may give you full text access.
Liquiritin Alleviates Inflammation in Lipopolysaccharide-Induced Human Corneal Epithelial Cells.
Current Eye Research 2024 May 20
PURPOSE: This research was designed to elucidate the anti-inflammatory impacts of liquiritin on lipopolysaccharide (LPS)-activated human corneal epithelial cells (HCECs).
METHODS: The Cell Counting kit-8 (CCK-8) assay was adopted to assess cell viability. The enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α. Transcriptome analysis was conducted to identify the genes that exhibited differential expression between different treatment. The model group included cells treated with LPS (10 µg/mL), the treatment group comprised cells treated with liquiritin (80 µM) and LPS (10 µg/mL), and the control group consisted of untreated cells. To further validate the expression levels of the selected genes, including CSF2, CXCL1, CXCL2, CXCL8, IL1A, IL1B, IL24, IL6, and LTB, quantitative real-time PCR was performed. The expression of proteins related to the Akt/NF-κB signaling pathway was assessed through western blot analysis. NF-κB nuclear translocation was evaluated through immunofluorescence staining.
RESULTS: The secretion of IL-6, IL-8, and TNF-α in LPS-induced HCECs was significantly downregulated by liquiritin. Based on the transcriptome analysis, the mRNA expression of pro-inflammatory cytokines, namely IL-6, IL-8, IL-1β, IL-24, TNF-α, and IL-1α was overproduced by LPS stimulation, and suppressed after liquiritin treatment. Furthermore, the Western blot results revealed a remarkable reduction in the phosphorylation degrees of NF-κB p65, IκB, and Akt upon treatment with liquiritin. Additionally, immunofluorescence analysis confirmed liquiritin's inhibition of LPS-induced p65 nuclear translocation.
CONCLUSIONS: Collectively, these findings imply that liquiritin suppresses the expression of proinflammatory cytokines, and the anti-inflammatory impacts of liquiritin may be caused by its repression of the Akt/NF-κB signaling pathway in LPS-induced HCECs. These data indicate that liquiritin could provide a potential therapeutic application for inflammation-associated corneal diseases.
METHODS: The Cell Counting kit-8 (CCK-8) assay was adopted to assess cell viability. The enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α. Transcriptome analysis was conducted to identify the genes that exhibited differential expression between different treatment. The model group included cells treated with LPS (10 µg/mL), the treatment group comprised cells treated with liquiritin (80 µM) and LPS (10 µg/mL), and the control group consisted of untreated cells. To further validate the expression levels of the selected genes, including CSF2, CXCL1, CXCL2, CXCL8, IL1A, IL1B, IL24, IL6, and LTB, quantitative real-time PCR was performed. The expression of proteins related to the Akt/NF-κB signaling pathway was assessed through western blot analysis. NF-κB nuclear translocation was evaluated through immunofluorescence staining.
RESULTS: The secretion of IL-6, IL-8, and TNF-α in LPS-induced HCECs was significantly downregulated by liquiritin. Based on the transcriptome analysis, the mRNA expression of pro-inflammatory cytokines, namely IL-6, IL-8, IL-1β, IL-24, TNF-α, and IL-1α was overproduced by LPS stimulation, and suppressed after liquiritin treatment. Furthermore, the Western blot results revealed a remarkable reduction in the phosphorylation degrees of NF-κB p65, IκB, and Akt upon treatment with liquiritin. Additionally, immunofluorescence analysis confirmed liquiritin's inhibition of LPS-induced p65 nuclear translocation.
CONCLUSIONS: Collectively, these findings imply that liquiritin suppresses the expression of proinflammatory cytokines, and the anti-inflammatory impacts of liquiritin may be caused by its repression of the Akt/NF-κB signaling pathway in LPS-induced HCECs. These data indicate that liquiritin could provide a potential therapeutic application for inflammation-associated corneal diseases.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app