Add like
Add dislike
Add to saved papers

Generalizability of deep learning in organ-at-risk segmentation: A transfer learning study in cervical brachytherapy.

PURPOSE: Deep learning can automate delineation in radiation therapy, reducing time and variability. Yet, its efficacy varies across different institutions, scanners, or settings, emphasizing the need for adaptable and robust models in clinical environments. Our study demonstrates the effectiveness of the transfer learning (TL) approach in enhancing the generalizability of deep learning models for auto-segmentation of organs-at-risk (OARs) in cervical brachytherapy.

METHODS: A pre-trained model was developed using 120 scans with ring and tandem applicator on a 3 T magnetic resonance (MR) scanner (RT3). Four OARs were segmented and evaluated. Segmentation performance was evaluated by Volumetric Dice Similarity Coefficient (vDSC), 95 % Hausdorff Distance (HD95), surface DSC, and Added Path Length (APL). The model was fine-tuned on three out-of-distribution target groups. Pre- and post-TL outcomes, and influence of number of fine-tuning scans, were compared. A model trained with one group (Single) and a model trained with all four groups (Mixed) were evaluated on both seen and unseen data distributions.

RESULTS: TL enhanced segmentation accuracy across target groups, matching the pre-trained model's performance. The first five fine-tuning scans led to the most noticeable improvements, with performance plateauing with more data. TL outperformed training-from-scratch given the same training data. The Mixed model performed similarly to the Single model on RT3 scans but demonstrated superior performance on unseen data.

CONCLUSIONS: TL can improve a model's generalizability for OAR segmentation in MR-guided cervical brachytherapy, requiring less fine-tuning data and reduced training time. These results provide a foundation for developing adaptable models to accommodate clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app