Add like
Add dislike
Add to saved papers

Prohibitin 2 deficiency in photoreceptors leads to progressive Retinal Degeneration and facilitated Müller glia engulfing microglia debris.

Müller glia and microglia are capable of phagocytosing fragments of retinal cells in response to retinal injury or degeneration. However, the direct evidence for their mutual interactions between Müller glia and microglia in the progression of Retinal Degeneration (RD) remains largely unclear. This study aims to construct a progressive RD mouse model and investigate the activated pattern of Müller glia and the interplay between Müller glia and microglia in the early stage or progression of RD. A Prohibitin 2 (Phb2) photoreceptor-specific knockout (RKO) mouse model was generated by crossing Phb2flox/flox mice with Rhodopsin-Cre mice. Optical Coherence Tomography (OCT), histological staining, and Electroretinography (ERG) assessed retinal structure and function, and RKO mice exhibited progressive RD from six weeks of age. In detail, six-week-old RKO mice showed no significant retinal impairment, but severe vision dysfunction and retina thinning were shown in ten-week-old RKO mice. Furthermore, RKO mice were sensitive to Light Damage (LD) and showed severe RD at an early age after light exposure. Bulk retina RNA-seq analysis from six-week-old control (Ctrl) and RKO mice showed reactive retinal glia in RKO mice. The activated pattern of Müller glia and the interplay between Müller glia and microglia was visualized by immunohistology and 3D reconstruction. In six-week-old RKO mice or light-exposed Ctrl mice, Müller glia was initially activated at the edge of the retina. Moreover, in ten-week-old RKO mice or light-exposed six-week-old RKO mice with severe photoreceptor degeneration, abundant Müller glia was activated across the whole retinas. With the progression of RD, phagocytosis of microglia debris by activated Müller glia was remarkably increased. Altogether, our study establishes a Phb2 photoreceptor-specific knockout mouse model, which is a novel mouse model of RD and can well demonstrate the phenotype of progressive RD. We also report that Müller glia in the peripheral retina is more sensitive to the early damage of photoreceptors. Our study provides more direct evidence for Müller glia engulfing microglia debris in the progression of RD due to photoreceptor Phb2 deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app