Add like
Add dislike
Add to saved papers

Can Artificial Intelligence Mitigate Missed Diagnoses by Generating Differential Diagnoses for Neurosurgeons?

World Neurosurgery 2024 May 16
INTRODUCTION: Neurosurgery emphasizes the criticality of accurate differential diagnoses, with diagnostic delays posing significant health and economic challenges. As large language models (LLMs) emerge as transformative tools in healthcare, this study seeks to elucidate their role in assisting neurosurgeons with the differential diagnosis process, especially during preliminary consultations.

METHODS: This study employed three chat-based LLMs, ChatGPT (versions 3.5 and 4.0), Perplexity AI, and Bard AI, to evaluate their diagnostic accuracy. Each LLM was prompted using clinical vignettes, and their responses were recorded to generate differential diagnoses for 20 common and uncommon neurosurgical disorders. Disease-specific prompts were crafted using Dynamed, a clinical reference tool. The accuracy of the LLMs was determined based on their ability to identify the target disease within their top differential diagnoses correctly.

RESULTS: For the initial differential, ChatGPT 3.5 achieved an accuracy of 52.63%, while ChatGPT 4.0 performed slightly better at 53.68%. Perplexity AI and Bard AI demonstrated 40.00% and 29.47% accuracy, respectively. As the number of considered differentials increased from two to five, ChatGPT 3.5 reached its peak accuracy of 77.89% for the top five differentials. Bard AI and Perplexity AI had varied performances, with Bard AI improving in the top five differentials at 62.11%. On a disease-specific note, the LLMs excelled in diagnosing conditions like epilepsy and cervical spine stenosis but faced challenges with more complex diseases such as Moyamoya disease and ALS.

CONCLUSION: LLMs showcase the potential to enhance diagnostic accuracy and decrease the incidence of missed diagnoses in neurosurgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app