Add like
Add dislike
Add to saved papers

Intelligent quality control of traditional chinese medical tongue diagnosis images based on deep learning.

BACKGROUND: Computer-aided tongue and face diagnosis technology can make Traditional Chinese Medicine (TCM) more standardized, objective and quantified. However, many tongue images collected by the instrument may not meet the standard in clinical applications, which affects the subsequent quantitative analysis. The common tongue diagnosis instrument cannot determine whether the patient has fully extended the tongue or collected the face.

OBJECTIVE: This paper proposes an image quality control algorithm based on deep learning to verify the eligibility of TCM tongue diagnosis images.

METHODS: We firstly gathered enough images and categorized them into five states. Secondly, we preprocessed the training images. Thirdly, we built a ResNet34 model and trained it by the transfer learning method. Finally, we input the test images into the trained model and automatically filter out unqualified images and point out the reasons.

RESULTS: Experimental results show that the model's quality control accuracy rate of the test dataset is as high as 97.06%. Our methods have the strong discriminative power of the learned representation. Compared with previous studies, it can guarantee subsequent tongue image processing.

CONCLUSIONS: Our methods can guarantee the subsequent quantitative analysis of tongue shape, tongue state, tongue spirit, and facial complexion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app