Add like
Add dislike
Add to saved papers

Chloroquine and cinchonine affect rat vascular smooth muscle tonus through calcium channels - in silico and in vitro approaches.

BACKGROUND: In the present study, two structurally similar alkaloids from trees of Cinchona genus, chloroquine and cinchonine, were examined for their vasorelaxant effects in a model of phenylephrine-induced smooth muscle contractions.

METHODS: Potential mechanisms of action associated with endothelial vasorelaxant compounds, voltage-gated Ca2+ channels (LTCCs), and inositol triphosphate receptors were examined in isolated rat aortic rings. Also, an in silico approach was used to predict the activity of the two test compounds.

RESULTS: Experimental results revealed that both chloroquine and cinchonine significantly decrease phenylephrine-induced smooth muscle contractions, although to a different extent. Evaluated mechanisms of action indicate that endothelium is not involved in the vasorelaxant action of the two tested alkaloids. On the other hand, voltage-gated Ca2+ channels were found to be the dominant way of action associated with the vasorelaxant action of chloroquine and cinchonine. Finally, IP3R is found to have only a small impact on the observed activity of the tested compounds.

CONCLUSION: Molecular docking studies predicted that chloroquine possesses a significant activity toward a suitable model of LTCCs, while cinchonine does not. The results of the present study point to the fact that great caution should be paid while administering chloroquine to vulnerable patients, especially those with cardiovascular disorders (Tab. 3, Fig. 3, Ref. 28).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app