Add like
Add dislike
Add to saved papers

Sequence Analysis of Inducible, Replication-Competent Virus Reveals No Evidence of HIV-1 Evolution During Suppressive Antiviral Therapy, Indicating a Lack of Ongoing Viral Replication.

BACKGROUND: Persistence of HIV-1 in reservoirs necessitates life-long antiretroviral therapy (ART). There are conflicting data using genetic analysis on whether persistence includes an actively replicating reservoir with strong evidence arguing against replication.

METHODS: We investigated the possibility of ongoing viral evolution during suppressive therapy by comparing near full-length viral genomic sequences using phylogenetic analysis of viral RNA in plasma before therapy initiation early after infection and from virus induced to grow from the latent reservoir after a period of suppressive ART. We also focused our analysis on evidence of selective pressure by drugs in the treatment regimen and at sites of selective pressure by the adaptive immune response.

RESULTS: Viral genomes induced to grow from the latent reservoir from 10 participants with up to 9 years on suppressive ART were highly similar to the nearly homogeneous sequences in plasma taken early after infection at ART initiation. This finding was consistent across the entire genome and when the analysis focused on sites targeted by the drug regimen and by host selective pressure of antibody and cytotoxic T cells. The lack of viral evolution away from pretherapy sequences in spite of demonstrated selective pressure is most consistent with a lack of viral replication during reservoir persistence.

CONCLUSIONS: These results do not support ongoing viral replication as a mechanism of HIV-1 persistence during suppressive ART.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app