Add like
Add dislike
Add to saved papers

Synchronous Diagnosis of Diabetic Retinopathy by a Handheld Retinal Camera, Artificial Intelligence, and Simultaneous Specialist Confirmation.

PURPOSE: Diabetic retinopathy (DR) is a leading cause of preventable blindness, particularly in underserved regions where access to ophthalmic care is limited. This study presents a proof of concept for utilizing a portable handheld retinal camera with an embedded artificial intelligence (AI) platform, complemented by a synchronous remote confirmation by retina specialists, for DR screening in an underserved rural area.

DESIGN: Retrospective cohort study SUBJECTS: 1,115 individuals with diabetes.

METHODS: A retrospective analysis of a screening initiative conducted in four municipalities in Northeastern Brazil, targeting the diabetic population. A portable handheld retinal camera captured macula-centered and disc-centered images, which were analyzed by the AI system. Immediate push notifications were sent out to retina specialists upon the detection of significant abnormalities, enabling synchronous verification and confirmation, with on-site patient feedback within minutes. Referral criteria were established, and all referred patients underwent a complete ophthalmic work-up and subsequent treatment.

MAIN OUTCOME MEASURES: Proof-of-concept implementation success.

RESULTS: Out of 2,052 invited individuals, 1,115 participated, with a mean age of 60.93 years and diabetes duration of 7.52 years, of whom 66.03% were women. The screening covered 2,222 eyes, revealing various retinal conditions. Referable eyes for DR were 11.84%, with an additional 13% for other conditions (diagnoses included various stages of DR, media opacity, nevus, drusen, enlarged cup-to-disc ratio, pigmentary changes, and other). AI performance for overall detection of referable cases (both DR and other conditions) was: sensitivity- 84.23% (95% CI- 82.63-85.84), specificity- 80.79% (95% CI- 79.05- 82.53). When we assessed whether AI matched any clinical diagnosis, be it referable or not, sensitivity was 85.67% (95% CI- 84.12-87.22), specificity was 98.86 (95% CI- 98.39-99.33), and AUC was 0.92 (95% CI- 0.91-0.94).

CONCLUSIONS: The integration of a portable device, AI analysis, and synchronous medical validation has the potential to play a crucial role in preventing blindness from DR, especially in socially unequal scenarios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app