Add like
Add dislike
Add to saved papers

Nigrostriatal inflammation is associated with nonmotor symptoms in an experimental model of prodromal Parkinson's disease.

Neuroscience 2024 May 14
Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app