Add like
Add dislike
Add to saved papers

Accurate fall risk classification in elderly using one gait cycle data and machine learning.

BACKGROUND: Falls among the elderly are a major societal problem. While observations of medium-distance walking using inertial sensors identified potential fall predictors, classifying individuals at risk based on single gait cycles remains elusive. This challenge stems from individual variability and step-to-step fluctuations, making accurate classification difficult.

METHODS: We recruited 44 participants, equally divided into high and low fall-risk groups. A smartphone secured on their second sacral spinous process recorded data during indoor walking. Features were extracted at each gait cycle from a 6-dimensional time series (tri-axial angular velocity and tri-axial acceleration) and classified using the gradient boosting decision tree algorithm.

FINDINGS: Mean accuracy across five-fold cross-validation was 0.936. "Age" was the most influential individual feature, while features related to acceleration in the gait direction held the highest total relative importance when aggregated by axis (0.5365).

INTERPRETATION: Combining acceleration, angular velocity data, and the gradient boosting decision tree algorithm enabled accurate fall risk classification in the elderly, previously challenging due to lack of discernible features. We reveal the first-ever identification of three-dimensional pelvic motion characteristics during single gait cycles in the high-risk group. This novel method, requiring only one gait cycle, is valuable for individuals with physical limitations hindering repetitive or long-distance walking or for use in spaces with limited walking areas. Additionally, utilizing readily available smartphones instead of dedicated equipment has potential to improve gait analysis accessibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app