Add like
Add dislike
Add to saved papers

Subnormothermic ex vivo lung perfusion possibly protects against ischemia-reperfusion injury via the mTORC-HIF-1α pathway.

BACKGROUND: Ex vivo lung perfusion (EVLP) is a useful technique for evaluating and repairing donor lungs for transplantation. However, studies examining the effects of perfusate temperature on graft function are limited. Thus, this study aimed to examine these effects during EVLP on ischemic-reperfusion injury in the donor lung.

METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into three groups, as follows: no treatment (sham group, n=5), normothermic EVLP (37 °C, n=5), and subnormothermic EVLP (30 °C, n=5). Lung function analyses, including oxygen capacity (OC), compliance, and pulmonary vascular resistance (PVR), were performed hourly during EVLP. Further, after 4 h of EVLP, histological evaluation of the right lobe was performed using the lung injury severity (LIS) scale. The expression levels of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-18 were evaluated. Metabolomic analysis of left lung tissues was conducted using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) after 4 h of EVLP in the EVLP groups and after 1 h of cold preservation in the sham group.

RESULTS: Compared with those in the normothermic group, in the subnormothermic group, functional parameters during EVLP and subsequent histologic results were significantly superior, expression levels of inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-18 were significantly lower, and glycolytic activity was significantly decreased. Furthermore, expression levels of mammalian target of rapamycin complex (mTORC), hypoxia-inducible factor (HIF) 1α, and nucleotide-binding domain, leucine-rich-containing family pyrin domain containing 3 (NLRP3) and its effector caspase-1 were significantly lower in the subnormothermic group than in the normothermic group.

CONCLUSIONS: EVLP with subnormothermic perfusion improves lung graft function by reducing the expression of pro-inflammatory cytokines and glycolytic activity during EVLP. Additionally, EVLP can be a useful target for the improvement of graft function after transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app