We have located links that may give you full text access.
Molecular characterization and induced changes of histone acetyltransferases in the tick Haemaphysalis longicornis in response to cold stress.
Parasites & Vectors 2024 May 12
BACKGROUND: Epigenetic modifications of histones play important roles in the response of eukaryotic organisms to environmental stress. However, many histone acetyltransferases (HATs), which are responsible for histone acetylation, and their roles in mediating the tick response to cold stress have yet to be identified. In the present study, HATs were molecularly characterized and their associations with the cold response of the tick Haemaphysalis longicornis explored.
METHODS: HATs were characterized by using polymerase chain reaction (PCR) based on published genome sequences, followed by multiple bioinformatic analyses. The differential expression of genes in H. longicornis under different cold treatment conditions was evaluated using reverse transcription quantitative PCR (RT-qPCR). RNA interference was used to explore the association of HATs with the cold response of H. longicornis.
RESULTS: Two HAT genes were identified in H. longicornis (Hl), a GCN5-related N-acetyltransferase (henceforth HlGNAT) and a type B histone acetyltransferase (henceforth HlHAT-B), which are respectively 960 base pairs (bp) and 1239 bp in length. Bioinformatics analysis revealed that HlGNAT and HlHAT-B are unstable hydrophilic proteins characterized by the presence of the acetyltransferase 16 domain and Hat1_N domain, respectively. RT-qPCR revealed that the expression of HlGNAT and HlHAT-B decreased after 3 days of cold treatment, but gradually increased with a longer period of cold treatment. The mortality rate following knockdown of HlGNAT or HlHAT-B by RNA interference, which was confirmed by RT-qPCR, significantly increased (P < 0.05) when H. longicornis was treated at the lowest lethal temperature (- 14 °C) for 2 h.
CONCLUSIONS: The findings demonstrate that HATs may play a crucial role in the cold response of H. longicornis. Thus further research is warranted to explore the mechanisms underlying the epigenetic regulation of the cold response in ticks.
METHODS: HATs were characterized by using polymerase chain reaction (PCR) based on published genome sequences, followed by multiple bioinformatic analyses. The differential expression of genes in H. longicornis under different cold treatment conditions was evaluated using reverse transcription quantitative PCR (RT-qPCR). RNA interference was used to explore the association of HATs with the cold response of H. longicornis.
RESULTS: Two HAT genes were identified in H. longicornis (Hl), a GCN5-related N-acetyltransferase (henceforth HlGNAT) and a type B histone acetyltransferase (henceforth HlHAT-B), which are respectively 960 base pairs (bp) and 1239 bp in length. Bioinformatics analysis revealed that HlGNAT and HlHAT-B are unstable hydrophilic proteins characterized by the presence of the acetyltransferase 16 domain and Hat1_N domain, respectively. RT-qPCR revealed that the expression of HlGNAT and HlHAT-B decreased after 3 days of cold treatment, but gradually increased with a longer period of cold treatment. The mortality rate following knockdown of HlGNAT or HlHAT-B by RNA interference, which was confirmed by RT-qPCR, significantly increased (P < 0.05) when H. longicornis was treated at the lowest lethal temperature (- 14 °C) for 2 h.
CONCLUSIONS: The findings demonstrate that HATs may play a crucial role in the cold response of H. longicornis. Thus further research is warranted to explore the mechanisms underlying the epigenetic regulation of the cold response in ticks.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app