We have located links that may give you full text access.
Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs.
Eye 2024 May 11
BACKGROUND/OBJECTIVES: Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening potential arising from signals persisting despite training and/or ambiguous signals such as from biomarker overlap or high comorbidity. The study aimed to explore the potential to detect clinically useful incidental ocular biomarkers by screening fundus photographs of hypertensive adults using diabetic deep learning algorithms.
SUBJECTS/METHODS: Patients referred for treatment-resistant hypertension were imaged at a hospital unit in Perth, Australia, between 2016 and 2022. The same 45° colour fundus photograph selected for each of the 433 participants imaged was processed by three deep learning algorithms. Two expert retinal specialists graded all false-positive results for diabetic retinopathy in non-diabetic participants.
RESULTS: Of the 29 non-diabetic participants misclassified as positive for diabetic retinopathy, 28 (97%) had clinically useful retinal biomarkers. The models designed to screen for fewer diseases captured more incidental disease. All three algorithms showed a positive correlation between severity of hypertensive retinopathy and misclassified diabetic retinopathy.
CONCLUSIONS: The results suggest that diabetic deep learning models may be responsive to hypertensive and other clinically useful retinal biomarkers within an at-risk, hypertensive cohort. Observing that models trained for fewer diseases captured more incidental pathology increases confidence in signalling hypotheses aligned with using self-supervised learning to develop autonomous comprehensive screening. Meanwhile, non-referable and false-positive outputs of other deep learning screening models could be explored for immediate clinical use in other populations.
SUBJECTS/METHODS: Patients referred for treatment-resistant hypertension were imaged at a hospital unit in Perth, Australia, between 2016 and 2022. The same 45° colour fundus photograph selected for each of the 433 participants imaged was processed by three deep learning algorithms. Two expert retinal specialists graded all false-positive results for diabetic retinopathy in non-diabetic participants.
RESULTS: Of the 29 non-diabetic participants misclassified as positive for diabetic retinopathy, 28 (97%) had clinically useful retinal biomarkers. The models designed to screen for fewer diseases captured more incidental disease. All three algorithms showed a positive correlation between severity of hypertensive retinopathy and misclassified diabetic retinopathy.
CONCLUSIONS: The results suggest that diabetic deep learning models may be responsive to hypertensive and other clinically useful retinal biomarkers within an at-risk, hypertensive cohort. Observing that models trained for fewer diseases captured more incidental pathology increases confidence in signalling hypotheses aligned with using self-supervised learning to develop autonomous comprehensive screening. Meanwhile, non-referable and false-positive outputs of other deep learning screening models could be explored for immediate clinical use in other populations.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app