Journal Article
Review
Add like
Add dislike
Add to saved papers

Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis.

BACKGROUND AND PURPOSE: We performed this systematic review and meta-analysis to investigate the performance of ML in detecting genetic mutation status in NSCLC patients.

MATERIALS AND METHODS: We conducted a systematic search of PubMed, Cochrane, Embase, and Web of Science up until July 2023. We discussed the genetic mutation status of EGFR, ALK, KRAS, and BRAF, as well as the mutation status at different sites of EGFR.

RESULTS: We included a total of 128 original studies, of which 114 constructed ML models based on radiomic features mainly extracted from CT, MRI, and PET-CT data. From a genetic mutation perspective, 121 studies focused on EGFR mutation status analysis. In the validation set, for the detection of EGFR mutation status, the aggregated c-index was 0.760 (95%CI: 0.706-0.814) for clinical feature-based models, 0.772 (95%CI: 0.753-0.791) for CT-based radiomics models, 0.816 (95%CI: 0.776-0.856) for MRI-based radiomics models, and 0.750 (95%CI: 0.712-0.789) for PET-CT-based radiomics models. When combined with clinical features, the aggregated c-index was 0.807 (95%CI: 0.781-0.832) for CT-based radiomics models, 0.806 (95%CI: 0.773-0.839) for MRI-based radiomics models, and 0.822 (95%CI: 0.789-0.854) for PET-CT-based radiomics models. In the validation set, the aggregated c-indexes for radiomics-based models to detect mutation status of ALK and KRAS, as well as the mutation status at different sites of EGFR were all greater than 0.7.

CONCLUSION: The use of radiomics-based methods for early discrimination of EGFR mutation status in NSCLC demonstrates relatively high accuracy. However, the influence of clinical variables cannot be overlooked in this process. In addition, future studies should also pay attention to the accuracy of radiomics in identifying mutation status of other genes in EGFR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app