Journal Article
Review
Add like
Add dislike
Add to saved papers

Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria.

Bacteria surround themselves with complex cell envelopes to maintain their integrity and protect against external insults. The envelope of Gram-negative organisms is multilayered, with two membranes sandwiching the periplasmic space that contains the peptidoglycan cell wall. Understanding how this complicated surface architecture is assembled during cell growth and division is a major fundamental problem in microbiology. Additionally, because the envelope is an important antibiotic target and determinant of intrinsic antibiotic resistance, understanding the mechanisms governing its assembly is relevant to therapeutic development. In the last several decades, most of the factors required to build the Gram-negative envelope have been identified. However, surprisingly, little is known about how the biogenesis of the different cell surface layers is co-ordinated. Here, we provide an overview of recent work that is beginning to uncover the links connecting the different envelope biosynthetic pathways and assembly machines to ensure uniform envelope growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app