Add like
Add dislike
Add to saved papers

SGLT2 inhibitor as a potential therapeutic approach in hyperthyroidism-induced cardiopulmonary injury in rats.

Hyperthyroidism-induced cardiac disease is an evolving health, economic, and social problem affecting well-being. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2-I) have been proven to be cardio-protective when administered in cases of heart failure. This study intended to investigate the potential therapeutic effect of SGLT2-I on hyperthyroidism-related cardiopulmonary injury, targeting the possible underlying mechanisms. The impact of the SGLT2-I, dapagliflozin (DAPA), (1 mg/kg/day, p.o) on LT4 (0.3 mg/kg/day, i.p)-induced cardiopulmonary injury was investigated in rats. The body weight, ECG, and serum hormones were evaluated. Also, redox balance, DNA fragmentation, inflammatory cytokines, and PCR quantification in heart and lung tissues were employed to investigate the effect of DAPA in experimentally induced hyperthyroid rats along with histological and immunohistochemical examination. Coadministration of DAPA with LT4 effectively restored all serum biomarkers to nearly average levels, improved ECG findings, and reinstated the redox balance. Also, DAPA could improve DNA fragmentation, elevate mtTFA, and lessen TNF-α and IGF-1 gene expression in both organs of treated animals. Furthermore, DAPA markedly improved the necro-inflammatory and fibrotic cardiopulmonary histological alterations and reduced the tissue immunohistochemical expression of TNF-α and caspase-3. Although further clinical and deep molecular studies are required before transposing to humans, our study emphasized DAPA's potential to relieve hyperthyroidism-induced cardiopulmonary injury in rats through its antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as via antagonizing the sympathetic over activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app