Add like
Add dislike
Add to saved papers

A Bayesian approach for exploring person × environment interaction within the environmental sensitivity meta-framework.

BACKGROUND: For investigating the individual-environment interplay and individual differences in response to environmental exposures as captured by models of environmental sensitivity including Diathesis-stress, Differential Susceptibility, and Vantage Sensitivity, over the last few years, a series of statistical guidelines have been proposed. However, available solutions suffer of computational problems especially relevant when sample size is not sufficiently large, a common condition in observational and clinical studies.

METHOD: In the current contribution, we propose a Bayesian solution for estimating interaction parameters via Monte Carlo Markov Chains (MCMC), adapting Widaman et al. (Psychological Methods, 17, 2012, 615) Nonlinear Least Squares (NLS) approach.

RESULTS: Findings from an applied exemplification and a simulation study showed that with relatively big samples both MCMC and NLS estimates converged on the same results. Conversely, MCMC clearly outperformed NLS, resolving estimation problems and providing more accurate estimates, particularly with small samples and greater residual variance.

CONCLUSIONS: As the body of research exploring the interplay between individual and environmental variables grows, enabling predictions regarding the form of interaction and the extent of effects, the Bayesian approach could emerge as a feasible and readily applicable solution to numerous computational challenges inherent in existing frequentist methods. This approach holds promise for enhancing the trustworthiness of research outcomes, thereby impacting clinical and applied understanding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app