Add like
Add dislike
Add to saved papers

Predicting response of hepatoblastoma primary lesions to neoadjuvant chemotherapy through contrast-enhanced computed tomography radiomics.

OBJECTIVE: To investigate the clinical value of contrast-enhanced computed tomography (CECT) radiomics for predicting the response of primary lesions to neoadjuvant chemotherapy in hepatoblastoma.

METHODS: Clinical and CECT imaging data were retrospectively collected from 116 children with hepatoblastoma who received neoadjuvant chemotherapy. Tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST). Subsequently, they were randomly stratified into a training cohort and a test cohort in a 7:3 ratio. The clinical model was constructed using univariate and multivariate logistic regression, while the radiomics model was developed based on selected radiomics features employing the support vector machine algorithm. The combined clinical-radiomics model incorporated both clinical and radiomics features.

RESULTS: The area under the curve (AUC) for the clinical, radiomics, and combined models was 0.704 (95% CI: 0.563-0.845), 0.830 (95% CI: 0.704-0.959), and 0.874 (95% CI: 0.768-0.981) in the training cohort, respectively. In the validation cohort, the combined model achieved the highest mean AUC of 0.830 (95% CI 0.616-0.999), with a sensitivity, specificity, accuracy, precision, and f1 score of 72.0%, 81.1%, 78.5%, 57.2%, and 63.5%, respectively.

CONCLUSION: CECT radiomics has the potential to predict primary lesion response to neoadjuvant chemotherapy in hepatoblastoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app