Journal Article
Review
Add like
Add dislike
Add to saved papers

Importance of 3β-hydroxysteroid dehydrogenases and their clinical use in prostate cancer.

Androgen receptor signaling is crucial for the development of treatment resistance in prostate cancer. Among steroidogenic enzymes, 3β-hydroxysteroid dehydrogenases (3βHSDs) play critical roles in extragonadal androgen synthesis, especially 3βHSD1. Increased expression of 3βHSDs is observed in castration-resistant prostate cancer tumors compared with primary prostate tumors, indicating their involvement in castration resistance. Recent studies link 3βHSD1 to resistance to androgen receptor signaling inhibitors. The regulation of 3βHSD1 expression involves various factors, including transcription factors, microenvironmental influences, and post-transcriptional modifications. Additionally, the clinical significance of HSD3B1 genotypes, particularly the rs1047303 variant has been extensively studied. The impact of HSD3B1 genotypes on treatment outcomes varies according to the therapy administered, suggesting the potential of HSD3B1 genotyping for personalized medicine. Targeting 3βHSDs may be a promising strategy for prostate cancer management. Overall, understanding the roles of 3βHSDs and their genetic variations may enable the development and optimization of novel treatments for prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app