Add like
Add dislike
Add to saved papers

Exosomal lncRNA-MIAT promotes neovascularization via the miR-133a-3p/MMP-X1 axis in diabetic retinopathy.

Diabetic retinopathy (DR), a most common microangiopathy of diabetes, causes vision loss and even blindness. The mechanisms of exosomal lncRNA remain unclear in the development of DR. Here, we first identifed the pro-angiogenic effect of exosomes derived from vitreous humor of proliferative diabetic retinopathy patients, where lncRNA-MIAT was enriched inside. Secondly, lncRNA-MIAT was demonstrated significantly increased in exosomes from high glucose induced human retinal vascular endothelial cell, and can regulate tube formation, migration and proliferation ability to promote angiogenesis in vitro and in vivo. Mechanistically, the pro-angiogenic effect of lncRNA-MIAT was via the lncRNA-MIAT/miR-133a-3p/MMP-X1 axis. The reduced level of lncRNA-MIAT in this axis mitigated the generation of retinal neovascular in mouse model of oxygen-induced retinopathy (OIR), providing crucial evidence for lncRNA-MIAT as a potential clinical target. These findings enhance our understanding of the role of exosomal lncRNA-MIAT in retinal angiogenesis, and propose a promising therapeutic strategy against diabetic retinopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app