We have located links that may give you full text access.
Dose Reduction in Pediatric Oncology Patients with Delayed Total-Body [ 18 F]FDG PET/CT.
Journal of Nuclear Medicine 2024 April 25
Our aim was to define a lower limit of reduced injected activity in delayed [18 F]FDG total-body (TB) PET/CT in pediatric oncology patients. Methods: In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.49 MBq/kg dose of [18 F]FDG. Five randomly subsampled low-count reconstructions were generated using ¼, ⅛, [Formula: see text], and [Formula: see text] of the counts in the full-dose list-mode reference standard acquisition (20 min), to simulate dose reduction. For the 2 lowest-count reconstructions, smoothing was applied. Background uptake was measured with volumes of interest placed on the ascending aorta, right liver lobe, and third lumbar vertebra body (L3). Tumor lesions were segmented using a 40% isocontour volume-of-interest approach. Signal-to-noise ratio, tumor-to-background ratio, and contrast-to-noise ratio were calculated. Three physicians identified malignant lesions independently and assessed the image quality using a 5-point Likert scale. Results: In total, 113 malignant lesions were identified in 18 patients, who met the inclusion criteria. Of these lesions, 87.6% were quantifiable. Liver SUVmean did not change significantly, whereas a lower signal-to-noise ratio was observed in all low-count reconstructions compared with the reference standard ( P < 0.0001) because of higher noise rates. Tumor uptake (SUVmax ), tumor-to-background ratio, and total lesion count were significantly lower in the reconstructions with [Formula: see text] and [Formula: see text] of the counts of the reference standard ( P < 0.001). Contrast-to-noise ratio and clinical image quality were significantly lower in all low-count reconstructions than with the reference standard. Conclusion: Dose reduction for delayed [18 F]FDG TB PET/CT imaging in children is possible without loss of image quality or lesion conspicuity. However, our results indicate that to maintain comparable tumor uptake and lesion conspicuity, PET centers should not reduce the injected [18 F]FDG activity below 0.5 MBq/kg when using TB PET/CT in pediatric imaging at 120 min after injection.
Full text links
Related Resources
Trending Papers
Demystifying normal-anion-gap metabolic acidosis: pathophysiology, aetiology, evaluation and diagnosis.Internal Medicine Journal 2024 July
Point-of-care ultrasound in Gastroenterology and Hepatology.Clinical Gastroenterology and Hepatology 2025 January 8
Nutritional Support in the ICU.BMJ : British Medical Journal 2025 January 2
Elective peri-operative management of adults taking glucagon-like peptide-1 receptor agonists, glucose-dependent insulinotropic peptide agonists and sodium-glucose cotransporter-2 inhibitors: a multidisciplinary consensus statement: A consensus statement from the Association of Anaesthetists, Association of British Clinical Diabetologists, British Obesity and Metabolic Surgery Society, Centre for Perioperative Care, Joint British Diabetes Societies for Inpatient Care, Royal College of Anaesthetists, Society for Obesity and Bariatric Anaesthesia and UK Clinical Pharmacy Association.Anaesthesia 2025 January 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app