Journal Article
Review
Add like
Add dislike
Add to saved papers

The diverse functions of DYRK2 in response to cellular stress.

To maintain microenvironmental and cellular homeostasis, cells respond to multiple stresses by activating characteristic cellular mechanisms consisting of receptors, signal transducers, and effectors. Dysfunction of these mechanisms can trigger multiple human diseases as well as cancers. Dual-specificity tyrosine-regulated kinases (DYRKs) are members of the CMGC group and are evolutionarily conserved from yeast to mammals. Previous studies revealed that DYRK2 has important roles in the regulation of the cell cycle and survival in cancer cells. On the other hand, recent studies show that DYRK2 also exhibits significant functions in multiple cellular stress responses and in maintaining cellular homeostasis. Hence, the further elucidation of mechanisms underlying DYRK2's diverse responses to various stresses helps to promote the advancement of innovative clinical therapies and pharmacological drugs. This review summarizes the molecular mechanisms of DYRK2, particularly focusing on cellular stress responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app